New Style API
DfSchema
Bases: BaseModel
Main class of the package
Represents a Schema to check (validate) dataframe against. Schema is flavor-agnostic (does not specify what kind of dataframe it is)
Source code in dfschema/core/core.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
from_df(df, subset_predicates=None, return_dict=False)
classmethod
generate DfSchema object from given dataframe.
By default will generate strict schema that given dataframe should match. Do not expect it to generate good schema, rather a scaffolding to build one manually from.
Note: this is a class method, not an instance method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pd.DataFrame
|
dataframe to generate from |
required |
subset_predicates |
List[dict]
|
Optional list of dictionary predicates to generate subsets from |
None
|
return_dict |
bool
|
wether return a dictionary instead of DfSchema instance (mostly for debugging purposes) |
False
|
Return
Union[DfSchema, dict]: either an instance of a class, or a dictionary
Source code in dfschema/core/core.py
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
from_dict(dict_)
classmethod
create DfSchema from dict.
same as DfSchema(**dict_)
, but will also migrate old protocol schemas if necessary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dict_ |
dict
|
dictionary to generate DfSchema from |
required |
Returns:
Name | Type | Description |
---|---|---|
DfSchema |
DfSchema
|
instance of DfSchema |
Source code in dfschema/core/core.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
from_file(path)
classmethod
create DfSchema from file
Method supports json and yaml formats Note: this is a class method, not instance method. PyYaml package is required to read yaml.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str or Path
|
path to the file, either json or yaml" |
required |
Returns:
Name | Type | Description |
---|---|---|
DfSchema |
DfSchema
|
DfSchema object instance |
Source code in dfschema/core/core.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
to_file(path)
write chema to file
Supports json and yaml.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str, Path
|
path to write file to. |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Source code in dfschema/core/core.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
validate_df(df, summary=True)
validate Dataframe aganist this schema
validate dataframe agains the schema as a dictionary. will raise either DataFrameSummaryError (if summary=True) or DataFrameValidationError for specific problem (if summary=False)
Example
import pandas as pd
from dfschema import DfSchema
path = '/schema.json'
df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
dfs.DfSchema.from_file(path).validate(df)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pd.DataFrame
|
A dataframe to validate |
required |
summary |
bool
|
if |
True
|
Source code in dfschema/core/core.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
validate_sql(sql, con, read_sql_kwargs=None, summary=True)
validate SQL table. Relies on pandas.read_sql
to infer datatypes
Right now does not support sampling, but this could be added in the future
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sql |
str
|
SQL statement (query) to run |
required |
con |
sqlalchemy.connection
|
connection to the database |
required |
read_sql_kwargs |
dict
|
Optional set of params to pass to |
None
|
summary |
bool
|
if |
True
|
Returns:
Type | Description |
---|---|
None
|
None |
Source code in dfschema/core/core.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
SubsetSchema
Bases: BaseModel
Subset is almost identical to DfSchema,
except it is assumed to run validation on a SUBSET of the dataframe.
It also has a predicate
attribute that defines way to retrieve this subset from
the root dataframe.
Also it raises SubsetSummaryError
instead of DataFrameSummaryError
Source code in dfschema/core/core.py
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
from_df(df, predicate, return_dict=False)
classmethod
generate SubsetSchema object from given dataframe and a predicate
By default will generate strict schema that given dataframe should match.
Do not expect it to generate good schema, rather a scaffolding to build
one manually from.
Note: this is a class method, not an instance method.
Args:
df (pd.DataFrame): dataframe to generate from
predicate (dict, str, Callable): Predicate to filter by. If string, will use it as an argument to `df.query`.
If callable, assumes it to be a function that returns a subset if given a dataframe. If dictionary, will assume keys to be columns and values - sets of possible values. return_dict (bool): wether return a dictionary instead of SubsetSchema instance (mostly for debugging purposes) Return: Union[SubsetSchema, dict]: either an instance of a class, or a dictionary
Source code in dfschema/core/core.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
validate_df(df, root)
validate Dataframe aganist this schema
validate dataframe agains the schema as a dictionary. will raise either SubsetSummaryError or DataFrameValidationError for specific problem
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pd.DataFrame
|
A dataframe to validate |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Source code in dfschema/core/core.py
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|